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A model for non-Arrhenius structural and dielectric relaxation in glass-forming 
materials is based on defect clustering in supercooled liquids. Relaxation in the 
cold liquid is highly hindered, and assumed to require the presence of a mobile 
defect to loosen the structure near it. A mild distribution of free-energy barriers 
impeding defect hopping can generate a wide distribution of waiting times 
between relaxation events. When the mean waiting time is longer than the time 
of an experiment, no characteristic time scale exists. This case directly yields the 
Kohlrausch-Williams-Watts (KWW) relaxation law. A free-energy mismatch 
between defect and nondefect regions produces a defect~tefect attraction, which 
can lead to aggregation. This may occur in defect-rich "fragile" liquids which 
also exhibit Vogel kinetics. Defect aggregation and correlation in the "high-tem- 
perature" region above the critical consolute temperature T c is described using 
the Ornstein-Zernike theory of critical fluctuations. For a defect correlation 
length divergence (T--T,.) -~/2, a generalized Vogel law for the structural 
relaxation time r results: r=%exp[B / (T -Tc ) l s '@ In the mean-field limit 
(7 = 1 ) this provides as good an account of dielectric and structural relaxation in 
glycerol, n-propanol, and /-butyl bromide as does the original Vogel law, and 
for the mixed salt KNO3-Ca(NO3) 2 and B20 3 it also describes kinetics over 
their entire temperature ranges. A breakdown of the Vogel law in the immediate 
vicinity of T~ is avoided, and the need to invoke extra low-temperature 
mechanisms to explain an apparent "return to Arrhenius behavior" is removed. 

KEY WORDS: Glass transition; Vogel-Fulcher law; Kohlrausch-Williams/ 
Watts relaxation; Kauzmann paradox. 

1. I N T R O D U C T I O N  

While thermal activation plays a prominent role in all of chemical kinetics, 
it assumes an especially anomalous form near liquid-to-glass transitions. 
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Here, in the region from ! to 100 K or more above Tg, the activation 
energy for structural relaxation becomes temperature dependent, rising 
sharply as temperature falls, often to values several times larger than the 
molar heat of vaporization, of the liquid. No satisfactory explanation of this 
behavior has been found, though it is generally recognized that 
cooperativity is responsible, and the free-volume treatment remains the best 
,,theory.,,(1, 2) 

A second hallmark of the glass transition region, asymmetric 
Cole-Cole plots with stretched exponential Kohlrausch-Williams-Watts 
(KWW) (3'4) correlation functions, has received more attention in recent 
years, and mechanisms have been found which lead to such 
distributions. (5'6) One approach which is readily adopted to polymeric and 
molecular glasses invokes the idea of defect diffusion (DD). (5'7) In 1960, in 
the context of dielectric relaxation, Glarum introduced a model where a 
frozen-in dipole was relaxed upon its encounter with a mobile defect. (8) 
While Glarum considered a single defect and a single dipole in one dimen- 
sion, in 1975 Bordewijk (9) generalized this to include a finite concentration 
of mobile defects in three dimensions. In both cases the mobile defects were 
undergoing Brownian. Bordewijk's basic result was that, in three dimen- 
sions, the dipole-dipole correlation function decays exponentially, which is 
equivalent to a semicircular Cole-Cole plot. This result seemed to rule out 
DD mechanisms in viscous disordered materials inasmuch as the latter 
usually display asymmetric Cole-Cole plots and stretched exponential 
relaxation. In the next section we review an extended version of the DD 
model which leads directly to the Kohlrausch law for dielectric decay.(5'6'1~ 
The relaxation is still assumed to be induced by mobile defects, but the 
defect motion is characterized by a wide distribution of waiting times 
rather than by Brownian motion. Then we show how an attraction 
between defects leads to a condensation of the defect "gas" at Tc below Tg 
and results in a generalized Vogel law for relaxation rates. Comparison of 
this generalized Vogel law with experiment indicates improved agreement 
in cases such as B203 where data are available quite close to Tg. 

2. DEFECT D I F F U S I O N  ( D D )  A N D  K O H L R A U S C H  
R E L A X A T I O  N (4 7,10/ 

2.1. Mobi le  Defect  Formulat ion 

Consider a polarizable material with individual dipole moments #(t) 
in an electric field. When the field is turned off at t = 0 the decay of the 
dipole orientation correlation function 

~(t) = (#(t )  ~ ( o ) ) / ( # 2 ( o ) )  (I) 
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is related to the frequency-dependent dielectric constant e(e)) of the 
material by 

e(o)) - e~ _ I ~ eiO) t dO(t) dt (2) 
~o - ~ ~ Jo dt 

Following Glarum, (8/ we assume that a frozen-in dipole relaxes instan- 
taneously upon its encounter with a mobile defect. Let us start with a 
system at t = 0 with one frozen-in dipole and N mobile defects distributed 
among V lattice sites. For  simplicity the V sites are considered to form 
at/perfect 3D lattice and the dipole is placed at the origin of this lattice. 
Then ~b(t) in Eq. (1) represents the probability that none of the N mobile 
defects has reached the dipole by time t. It is given by 

~b(t) = 1 - V - l ~  F(lo, v)dz (3) 
10 

The term in brackets is one minus the probability that a given defect did 
reach the origin by time t, i.e., this is the probability that the defect in 
question did not reach the origin by time t. If the defect started at 10, 
F(10, ~) is the probability density that it reached 1 =0  for the first time at 
t = ~ This is integrated over all times less than t and averaged over all 
initial positions of the defect (which has a probability 1IV of initially being 
at a particular lattice site). The bracket is raised to the Nth power, as this 
is the probability that none of the N defects (noninteracting) has yet 
reached the origin. In the limit N, V ~ oc with N~ V = c, a constant concen- 
tration of defects, Eq. (3) becomes 

r  f~ F(lo, ~)d~ ] (4) 

which can be shown to be equal to 

~b(t) = e x p [ - c S ( t ) ]  (5) 

with. S(t) the number of distinct lattice sites a defect visits in a time t. 

2.2. Distribution of Jump Times 

What a defect is and how it moves have not yet been specified. The 
crux of the physics lies in these issues. We first assume that a defect jumps 
randomly on the lattice and focus on the kinetics of its hopping. Let O(t) 
be the probability density that a defect remains at a lattice site for a time t. 
If the defect must jump over an activation barrier of height Ao, then 

~(t) = 20 e x p ( - 2 0 0  (6a) 
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20 = Vo e x p ( -  Ao/kT)  (6b) 

For a distribution of barrier heights f ( A )  (but not prefactors) Eq. (6a) is 
replaced by 

where 

The choice 

and 

yields 

O(t) = 2e X'p(2) d;t (7a) 

p(2) =f (A)IdA/d2l  (7b) 

2 = v e x p ( - A / k T )  (8a) 

f ( A )  = (kTo) -1 exp( - A/kTo)  (8b) 

/~r(/~ + 1 ) 
~,(t)~ ;~o~ t -1 -8  as t--, oo (9) 

with fl = T IT  o. The quantity S(t)  can be calculated from ~k(t) to give (s'6) 

~b(t) = e x p ( - c o n s t ,  c. t/3) (10) 

where the constant will depend upon ft. This expression is valid for fl ~< 1. If 
fl > 1, exponential decay will result. The complete time dependence of ~b(t), 
which is somewhat more complicated than Eq. (10), has been given. (9) 
Essentially, the decay is initially exponential (due to defects leaving shallow 
traps) before it crosses over to stretched exponential behavior. The range of 
validity of Eq. (10) is shown to cover the range of experimental data. Note 
that to derive Eq. (10), the mean waiting time is ( t )  --S~ tO(t) d t =  0% i.e., 
there is no characteristic time scale in the hopping process. The mild 
distribution of barrier heights induces a wide distribution of hopping times. 

which when substituted into Eq. (7a) gives 

P(x) ~. \ ~ /  To (8c) 
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If ( t )  were finite, exponential decay, e.g., exp( -cons t . t / ( t ) ) ,  would 
result. The form 

~(t)=exp(-( t /r)e) ,  t3< 1 (11) 

is called the Kohlrausch-Williams-Watts (KWW) or stretched exponential 
law. It was first introduced by Kohlrausch (m in 1854 for the analysis of 
charge decay in Leyden jars. His son later employed the same model to 
describe creep in glass and rubber fibers. (~2~ Several other examples of creep 
and stress relaxation were reported, (~3~s) but this law only became widely 
known after 1970 when Williams and Watts I3~ discovered its ubiquitous 
appearance in the dielectric relaxation in polymeric melts near the glass 
transition. The stretched exponential law has since been found in NMR, (16) 
remnant magnetization, (17~ luminescence studies, (~8) optical scattering, (~9) 
and mechanical relaxation. (2~ 

Several theories besides defect diffusion, such as hierarchically 
constrained dynamics and direct transfer, have been proposed to derive the 
stretched exponential law. The common mathematical basis of these 
theories is given in ref. 6. 

3. D E F E C T  C L U S T E R I N G  A N D  G E N E R A L I Z E D  V O G E L  
K INET ICS  

The model leading to the KWW law of Eq. (11) can be generalized in 
several ways. First, (7) one may use activation free energies instead of 
energies in Eq. (8a). This preserves the KWW form but modifies the linear 
temperature dependence of ft. Second, one can allow the concentration of 
defects to vary with temperature. For example, if the defects are mobile 
vacancies which attract each other, as the temperature is lowered they will 
coalesce into voids (lowering both the energy and entropy). For 
definiteness, we consider here the case when the defect-defect attraction is 
strong enough to lead to a condensation of the defect gas (e.g., phase 
separation from the nondefect component) at a finite temperature T c below 
Tg. If the phase transition is second order or weakly first order, the familiar 
formalism of the 3D lattice gas or Ising model may be used to describe 
defect concentration fluctuations in the high-temperature pretransition 
region. (~1) The net pair correlation function between defects above Tc will 
have the Ornstein-Zernike form (22) 

I e-:r 
(12) G(r)-4~cR 2 r 

where c is the total defect density, R 2 is the second moment of the direct 
correlation function, and ~ is the reciprocal of the correlation length 
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between defects. As the temperature falls, the correlation length ~- i  
increases in a manner determined by the temperature dependence of the 
(osmotic) compressibility ~c-1. It may be shown that K and ~ are related by 

K=A/~ 2 (13) 

At a second-order phase transition • vanishes (22) 

K = ~:~ TcY (14) 

and a Landau or mean-field analysis of the phase transition gives 7 = 1. 
Combining Eqs. (12)-(14) gives a temperature dependence of the defect 
correlation length ( - l (T) ,  

r = ~ o ' ( T -  T~) -~/2 (15) 

and in the mean-field limit (i.e., 7 = 1), Eq. (15) shows that the correlation 
length between defects diverges as ( T - T ~ )  -~/2. As temperature falls, the 
average size of a cluster grows and the probability of finding an isolated 
single defect vanishes rapidly. If we assume that only isolated defects are 
mobile enough to bring about dipole relaxation, and that therefore it is the 
concentration of isolated defects which appears as c in Eq. (10), then one 
may understand non-Arrhenius Vogel behavior as arising from the 
disappearance of mobile defects through aggregation. To estimate the rate 
of disappearance of singlets, we write the probability of finding a singlet ca 
as the product of the probability of finding any defect (e.g., c) times the 
probability that another defect is not correlated with it: 

cl ~ c ( 1 - c )  z (16) 

where 1 - c  is the probability that a neighbor site is not a defect and z is 
the number of defects "next to" (i.e., correlated with) a given defect. At high 
temperature where the attraction between defects is low and the correlation 
length ( is short, z equals the number of near neighbors, 12 or so. More 
generally, 

Z= Vcorr/V1 (17) 

where Voorr is the correlation volume around a given defect and V1 is the 
volume of a single defect. As temperature falls and the correlation length 
grows, Eq. (17) becomes 

z =  1 / V I ( 3 = ( T  - Tc) l5y/gl ~3 (18) 
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Substituting Eq. (18) into Eq. (16) gives 

c 1 = c exp[ - B ' / ( T -  To) TM ] 

where 

- ln (1  -c)  
B ~  
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(19) 

When the singlet density of Eq. (19) is combined with Eqs. (10) and (11), 
the relaxation time is seen to behave as 

z = A e x p E B / ( T -  Tc) L57 ] (20) 

where B =- B'/fl. Equation (20) is a generalization of the Vogel form: 

rvog~ = A~ exp[  Bv/( T -  T~)] (21) 

with the difference that T -  Tc appears to the 1.57 power in Eq. (20). In the 
next section we apply Eq. (20) (in the mean-field limit 7 = 1) to relaxation 
data for several glass-forming liquids. 

4. APPLICATION OF EQ. (20) TO EXPERIMENT 

Figures 1-3 show fits of Eq. (20) to dielectric relaxation data for 
glycerol, n-propanol, (23) and /-butyl bromide (24) in the temperature range 
above their glass transitions. As we reported in a preliminary version of 
this work, (~~ Eq. (20) gives a good account of relaxation data, which is 
also fitted by the Vogel equation, Eq. (21). In such cases the data alone do 
not provide a means for discriminating between the expressions. 
Equation (20) is (numerically) "equivalent" to Eq. (21), and the defect 
model provides an alternative interpretation of the free volume picture. 

Figure 4 shows the result of fitting Eq. (20) to viscosity data for the 
mixed salt KNO3-Ca(NO3)2, a case in which it is well known that 
Eq. (21) breaks down near  Tg. (25) The fit is excellent over the full range of 
data available in ref. 25. Similarly, Fig. 5 shows Eq. (20) fitted to viscosity 
data for B203 ,  another example for which the Vogel law breaks down at 
low temperatures. In fact, the Vogel law overestimates the viscosity at 
lower temperatures, and it is generally said that a new mechanism sets in, 
with a return to Arrhenius behavior with a very large exponent. (26) It is 
seen in Figs. 4 and 5 that Eq. (20) fits over the full range of the data, and 
no evidence of a new mechanism is evident from the data. 

822/53/1-2-35 
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Fig. 1. Temperature variation of dielectric relaxation time in glycerol. Data from ref. 23. 
Solid line from Eq. (20) with A = 10 -12"43, B = 22,719 K 3/2, and T,. = 112.7 K. Parameters for 
the Vogel equation (21) are given in ref. 20; Av= 10 -14"41, B~=2203 K, and T~= 132 K. (In 
ref. 23 there appears to be an error in the value of B. We have adjusted it to fit the data.) The 
Vogel curve is not shown, since it lies so close to that for Eq. (20). The glycerol T~ is 193 K. 
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Fig. 2. Temperature variation of dielectric relaxation time in n-propanol. Data from ref. 23. 
Solid line from Eq. (20) with A = 10 -1~ B = 14,964 K 3/2, and T c = 40.2 K. Parameters for the 
Vogel equation (21) ai'e given in ref. 20; Av= 10 m99, By= 1061 K, and T~=73.5 K. The 
Vogel curve is not shown. The n-propanol Tg is 85.2 K. 
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Fig. 3. Tempera ture  variation of viscosity o f / -bu ty l  bromide. Data  from ref. 24. Solid line 
from Eq. (20) (assuming r /=  zG, where G is an approximately constant  elastic stiffness); with 
A = 10 8.67, B = 5289 K 3/2, and T C = 72 K. 
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Fig. 4. Tempera ture  variation of viscosity of KNO3-Ca(NO3)  2. Data  from ref. 25. Solid line 
from Eq. (20) with A = 10 2.53, B =  11,386 K 3/2, and To=  292.5 K ( T g = 3 3 2  K). 
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Fig. 5. Temperature variation of viscosity of B203. Data from ref. 26. Solid line from 
Eq. (20) with A = 10 ~176 B = 87,890 K 3/2, and Tc = 337.5 K. 

5. D I S C U S S I O N  

The defect clustering model of Section 3 assumes that a supercooled 
liquid is a binary solution of defect and nondefect structures. "Phase 
separation" should have occurred at the crystallization temperature, with 
the formation of a translationally and rotationally ordered crystal phase, 
and simultaneous disappearance and conversion of defect to ordered struc- 
tures. In complex glass-forming materials, a large nucleation barrier to 
crystallization permits supercooling of the disordered "mixture," trapping 
"dissolved" defects and preventing their reorganization and conversion to 
the lower free-energy structural units. The presence of dissolved defects 
imparts fluidity to the melt, which is a solid crystal in their absence. The 
higher free energy of a defect causes a free-energy mismatch with nondefect 
material, and spatial segregation may occur if this requires a lower 
activation barrier than conversion of defect to nondefect/crystalline struc- 
tures. If the free-energy mismatch and defect density are high enough, 
pretransitional fluctuations and correlations become evident before Tg is 
reached. The Vogel law Tv of Eq. (21) is interpreted as the temperature at 
which a binary consolute point would occur if the system mobility (on the 
time scale of the experiment) did not vanish first. 
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If the defect densi ty  is too  low or  if the defects are too  weakly  inter-  
acting,  Koh l r ausch  behav io r  m a y  still be seen [-Eq. (1 1)] ,  bu t  aggrega t ion  

leading  to Vogel - type  behavior ,  Eqs. (20) and  (21), will not. This can occur  
in "s t rong"  l iquids (e.g., ref. 27) such as SiO2, where defects are highly 
d i rec t iona l  bond ing  e r r o r s  which d is tor t  the local  ne twork  and repel o ther  
defects f rom the vicinity. The K a u z m a n n  p a r a d o x  (28) is expla ined  in terms 
of the under ly ing  phase  sepa ra t ion  at To, since defect aggrega t ion  raises the 
heat  capac i ty  and  lowers the en t ropy  rap id ly  in the low- tempera tu re  
region.  A discussion of  the t h e r m o d y n a m i c s  of defect aggrega t ion  near  Tg 

will be presented  elsewhere. 
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